Source code for spotmicro.motor

"""This file implements an accurate motor model.
Source: https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/minitaur/envs/motor.py
"""
import numpy as np

VOLTAGE_CLIPPING = 8.4
OBSERVED_TORQUE_LIMIT = 5.7
MOTOR_VOLTAGE = 7.4
MOTOR_RESISTANCE = 0.086
MOTOR_TORQUE_CONSTANT = 0.00954
MOTOR_VISCOUS_DAMPING = 0.0
MOTOR_SPEED_LIMIT = 9.5


[docs]class MotorModel(object): """The accurate motor model, which is based on the physics of DC motors. The motor model support two types of control: position control and torque control. In position control mode, a desired motor angle is specified, and a torque is computed based on the internal motor model. When the torque control is specified, a pwm signal in the range of [-1.0, 1.0] is converted to the torque. The internal motor model takes the following factors into consideration: pd gains, viscous friction, back-EMF voltage and current-torque profile. """ def __init__(self, torque_control_enabled=False, kp=1.2, kd=0): self._torque_control_enabled = torque_control_enabled self._kp = kp self._kd = kd self._resistance = MOTOR_RESISTANCE self._voltage = MOTOR_VOLTAGE self._torque_constant = MOTOR_TORQUE_CONSTANT self._viscous_damping = MOTOR_VISCOUS_DAMPING self._current_table = [0, 10, 20, 30, 40, 50, 60] self._torque_table = [0, 1, 1.9, 2.45, 3.0, 3.25, 3.5]
[docs] def set_voltage(self, voltage): self._voltage = voltage
[docs] def get_voltage(self): return self._voltage
[docs] def set_viscous_damping(self, viscous_damping): self._viscous_damping = viscous_damping
[docs] def get_viscous_dampling(self): return self._viscous_damping
[docs] def convert_to_torque(self, motor_commands, current_motor_angle, current_motor_velocity): """Convert the commands (position control or torque control) to torque. Args: motor_commands: The desired motor angle if the motor is in position control mode. The pwm signal if the motor is in torque control mode. current_motor_angle: The motor angle at the current time step. current_motor_velocity: The motor velocity at the current time step. Returns: actual_torque: The torque that needs to be applied to the motor. observed_torque: The torque observed by the sensor. """ if self._torque_control_enabled: pwm = motor_commands else: pwm = (-self._kp * (current_motor_angle - motor_commands) - self._kd * current_motor_velocity) pwm = np.clip(pwm, -1.0, 1.0) return self._convert_to_torque_from_pwm(pwm, current_motor_velocity)
def _convert_to_torque_from_pwm(self, pwm, current_motor_velocity): """Convert the pwm signal to torque. Args: pwm: The pulse width modulation. current_motor_velocity: The motor velocity at the current time step. Returns: actual_torque: The torque that needs to be applied to the motor. observed_torque: The torque observed by the sensor. """ observed_torque = np.clip( self._torque_constant * (pwm * self._voltage / self._resistance), -OBSERVED_TORQUE_LIMIT, OBSERVED_TORQUE_LIMIT) # Net voltage is clipped at 50V by diodes on the motor controller. voltage_net = np.clip( pwm * self._voltage - (self._torque_constant + self._viscous_damping) * current_motor_velocity, -VOLTAGE_CLIPPING, VOLTAGE_CLIPPING) current = voltage_net / self._resistance current_sign = np.sign(current) current_magnitude = np.absolute(current) # Saturate torque based on empirical current relation. actual_torque = np.interp(current_magnitude, self._current_table, self._torque_table) actual_torque = np.multiply(current_sign, actual_torque) return actual_torque, observed_torque